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Juniper (Juniperus spp.) has encroached on millions of hectares of sagebrush (Artemisia spp.) steppe. Juniper mechanical
mastication increases cover of understory species but could increase resource availability and subsequently invasive plant species.
We quantified the effects of juniper mastication on soil resource availability by comparing total C, total N, C :N ratio, Olsen
extractable P, sulfate S, and pH using soil samples and inorganic N (NO

3

−
+NH

4

+) using ion exchange membranes. We compared
resource availability in paired masticated and untreated areas in three juniper-dominated sagebrush and bunchgrass ecosystems
in the Utah portion of the Great Basin. Inorganic N was 4.7 times higher in masticated than in untreated areas across seasons
(𝑃 < 0.001). Within masticated areas, tree mounds of juniper leaf scales and twigs served as resource islands with 1.9 times higher
inorganic N and total C, and 2.8 times higher total N than bare interspaces across seasons (𝑃 < 0.01). Bare interspaces had 3.0–
3.4 times higher inorganic N than interspaces covered with masticated trees during late-summer through winter (𝑃 < 0.01). Soil
fertility changes associated with mastication were not considered sufficient to favor establishment of annual over perennial grasses,
and we expect both to increase in cover following juniper mastication.

1. Introduction

Juniper (Juniperus spp.) trees have encroached millions of
hectares of former sagebrush (Artemisia spp.) steppe in the
western US. [1]. Fire historically limited dominance of these
native trees over areas with limited understory cover not con-
ducive to carrying fire but to climate change, livestock grazing
in the late 1800s and early 1900s, and reduced fire frequency
have contributedwoodland expansion and infilling intomore
productive lands [1]. Juniper trees reduce understory plant
cover by using soil resources that otherwise could have
been used by the historic plant community. Over time,
this woodland encroachment creates a more heterogeneous
distribution of soil resources [2] because juniper trees move
resources from interspaces between trees to subcanopy tree
mounds through litter-fall (fallen foliage, twigs, and berries)
and decomposition of fine roots [3, 4]. The increased relative
concentrations of soil organic matter, nutrients, and soil

microorganism activity directly below trees result in resource
islands [5, 6] that promote continued tree dominance and
reduction of understory vegetation [7, 8] unless woodland
encroachment is controlled. Land managers mechanically
masticate (spinning spikes on a tractor shred/mulch standing
trees) encroaching juniper trees to help restore plant commu-
nity composition and reduce the potential for high-intensity
crown fires and in the future may harvest trees for biofuel
[9, 10].

The ecological concern is that masticating juniper trees
could increase resource availability as has happened following
juniper cutting [11]. If invasive annual weeds are abundant
pretreatment, they could dominate after treatment because
invasive annuals are highly responsive to soil inorganic N,
more competitive than perennials in environments with
high N availability [12, 13], and more efficient at N uptake
than native perennials [14, 15]. In contrast, reduced soil
N availability reduces the competitive ability of invasive
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annuals [16] more than native perennials [17, 18] reducing
plant community invasibility [16]. Perennial grasses perform
well with continually low soil N availability because they have
greater root: shoot ratios for increased resource uptake in
nutrient poor soils and greater nitrogen use efficiency with
reallocation of nutrients from senescing leaves to new plant
tissue [19].

Low soil N availability can be induced by addingmaterials
with high organic C and low N content [20], which includes
masticated-tree debris. Tree mastication produced debris
with an average of 6413 kg ha−1 (SD 4350.8) with diameters of
0–0.64 cm, 4102 kg ha−1 (SD 2440) with 0.64–2.54 cm diame-
ters, 1589 kg ha−1 (SD 2074) with 2.54–7.62 cm diameters, and
391 kg ha−1 (SD 1281)with>7.62 cmdiameters in a project that
included our study locations [21]. Soil microorganisms
immobilize available soil N when organic C energy sources
do not provide sufficient N for metabolism and growth [20].
The addition of chipped Utah juniper (Juniperus osteosperma
(Torr.) Little) and singleleaf piñon (Pinus monophylla Torr.
and Frem.), which is similar to adding masticated tree debris,
increased perennial grass density and cover and decreased
invasive annual grass density and cover [22]. Benson [22]
suggested that the increased perennial grass growth was
associated with increased soil moisture under the wood
chips and that the decreased invasive annual grass growth
was associated with reduced soil N availability. So far, it is
uncertain how much juniper tree mastication will alter plant
community dynamics by altering nutrient availability, but
increased soil water following juniper mastication [23] could
increase diffusion of nutrients through soil solution to roots
[24].

Our main objective was to determine the effect of juniper
mastication on soil nutrient availability and relate this to veg-
etation responses inwoodland treatments of previous studies.
We evaluated total C, total N, C :N ratio, Olsen extractable
P, sulfate S, and pH from soil samples and inorganic N
(NO
3

−
+NH
4

+) from ion exchangemembranes.We sought to
quantify potential changes in soil nutrient availability due to
the elimination of nutrient uptake bymasticated trees relative
to the effects of soil cover types including tree mounds and
masticated-tree debris. We hypothesized that (1) juniper tree
reduction by mastication will increase nutrient availability
compared to untreated areas, (2) tree mounds will have
higher nutrient concentrations than interspaces between tree
canopies, and (3) masticated-tree debris will reduce soil N
availability by supplying organic C to soil microorganisms
encouraging immobilization of inorganic soil N.

2. Materials and Methods

2.1. Study Locations. Wemeasured soil nutrients atGreenville
(38∘ 12N, 112∘ 48W), Onaqui (40∘ 13N, 112∘ 28W), and
Stansbury (40∘ 35N, 112∘ 39W) spread across the western
Utah portion of the Great Basin, US [25, http://www.sagestep
.org/]. Summers are mostly dry with most precipitation
falling as snow in winter and rain during spring and fall.
Annual average temperatures during the study were 9-10∘C,
minimum average temperatures were 0–3∘C, and maximum
average temperatures were 16–19∘C.

Greenville elevation ranges from 1,770 to 1,860m with
annual average precipitation of 193mm in 2009 and 387mm
in 2010. Soils are classified as loamy-skeletal, carbonatic, and
mesic Typic Calcixerepts using USDA soil taxonomy [26].
Greenville surface soil texture is gravelly sandy loam (15%
clay, 66% sand, and 19% silt), cation exchange capacity is 12.5
milliequivalents ⋅ 100 grams−1, and electrical conductivity is
1.0 decisiemens ⋅meter−1 (Beaver-Cove Fort soil survey).
Greenville had a premastication maximum Utah juniper
and two-needle piñon (Pinus edulis Engelm.) density of 586
trees ⋅ ha−1 for trees taller than 0.5m.

Onaqui elevation ranges from 1,690 to 1,890m with
annual average precipitation of 259mm in 2008, 287mm
in 2009, and 370mm in 2010. Soils are classified as loamy-
skeletal, carbonatic, mesic, and shallow Petrocalcic Palexe-
rolls usingUSDA soil taxonomy [26]. Onaqui surface soil tex-
ture is gravelly loam (14% clay, 45% sand, and 41% silt), cation
exchange capacity is 15 milliequivalents ⋅ 100 grams−1, and
electrical conductivity is 1.0 decisiemens ⋅meter−1 (Tooele
soil survey). Onaqui had a premastication maximum Utah
juniper (Juniperus osteosperma (Torr.) Little) density of 444
trees ⋅ ha−1 for trees taller than 0.5m.

Stansbury elevation ranges from 1,710 to 1,830m with
annual average precipitation of 440mm in 2010. Soils
are classified as loamy-skeletal, mixed, active, and frigid
Pachic Haploxerolls using USDA soil taxonomy [26]. Stans-
bury surface soil texture is very gravelly loam (14% clay,
45% sand, and 41% silt), cation exchange capacity is 15
milliequivalents ⋅ 100 grams−1, and electrical conductivity is
0.0 decisiemens ⋅meter−1 (Tooele soil survey). Stansbury
had a premastication maximum Utah juniper density of
1030 trees ⋅ ha−1 for trees taller than 0.5m.

Sagebrush (Artemisia spp.) and bunchgrass plant com-
munities previously dominated these locations but at the time
of juniper tree mastication, areas to be sampled were located
in dense phase III stands [sensu 1] where little understory
vegetation remained. Sampled areas had less than 5% shrub
cover and less than 20% perennial grass cover. When tree
encroachment was less severe, major shrubs species included
Wyoming big sagebrush (Artemisia tridentata Nutt. ssp.
wyomingensis Beetle & Young), rabbitbrush (Chrysothamnus
viscidiflorus (Hook.) Nutt.), and antelope bitterbrush (Pur-
shia tridentata (Pursh) DC.). Major grass species included
bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A.
Löve), Sandberg bluegrass (Poa secunda J. Presl), needle
and thread (Hesperostipa comata (Trin. & Rupr.) Bark-
worth), Indian ricegrass (Achnatherumhymenoides (Roem.&
Schult.) Barkworth), and cheatgrass (Bromus tectorum L.).

2.2. Treatment Implementation. Trees taller than 0.5m were
masticated in the fall of 2006 at Onaqui and in the fall of 2007
at Greenville and Stansbury. Contractors masticated Utah
juniper at Onaqui and Stansbury using a Tigercat M726E
Mulcher (Tigercat Industries Inc., Brantford, ON)with Fecon
Bull Hog (Fecon Inc., Lebanon, OH) masticator. A skid-
steer loader with Fecon Bull Hog masticator was used to
masticate Utah juniper and two-needle piñon at Greenville.
These masticators masticate trees similarly.
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Figure 1: Untreated control area identifying microsite types.

2.3. Study Design. We implemented a randomized complete
block design with adjacent, paired masticated, and untreated
control plots to test whether mechanical mastication would
increase nutrient availability, presumably by reducing juniper
tree resource uptake. Untreated plots were 6–50 ha in size
depending on space available for research at the three study
locations. Masticated and untreated plots within a location
had similar vegetation and soils. Each treatment plot had
four replicated blocks and each block contained two trees.
We selected trees with mounds >2m in diameter to allow
enough room for sampling. We partitioned juniper inter-
and subcanopy areas into wedge shaped microsites to sep-
arate the effects of soil cover types including tree mounds
and masticated-tree debris on soil nutrient availability. In
untreated plots, the area around study trees was portioned
into the following three microsite types: (1) juniper tree
mounds with intact litter composed of canopy-dropped leaf
scales, fruits, and twigs; (2) juniper tree mounds where litter
was removed by hand down to the soil surface; and (3) bare
interspaces between trees with little remaining vegetation
(Figure 1). In masticated plots, the areas around study trees
were partitioned into the following five microsite types: (1)
intact tree mounds; (2) removed-litter tree mounds; (3) bare
interspaces; (4) bare interspaces coveredwithmasticated-tree
debris consisting mainly of pieces of wood, leaf scales, and
bark; and (5) intact tree mounds covered by masticated-tree
debris [23] (Figure 2). We combined microsite samples from
replicated trees within blocks resulting in 12 samples from
untreated plots and 20 samples frommasticated plots for each
location and sampling date.

2.4. Field Measurements. We collected microsite soil samples
annually from the top 2 cm of the soil profile because
masticated-tree debris would likely mostly influence the top
portion of the soil profile where a large portion of grass
roots and the active seed bank are located. Soil samples were
collected during August at Greenville in 2008–2010, Onaqui
in 2008–2010, and Stansbury only in 2008 due to a wildfire in
August 2009 (Table 1). We analyzed soil samples for total C

Removed-litter tree mound

Interspace

Intact tree mound

Tree stump

Masticated debris on tree mound

Masticated debris on interspace

Figure 2: Masticated treatment area identifying microsite types.

and total N [27] using a LECO TruSpec CN analyzer (LECO
Cor., St. Joseph,MI). Soil sample analyses also includedOlsen
P [28], sulfate S [29], and pH in a saturated paste [30].

We measured soil inorganic N that included nitrate
(NO
3

−) and ammonium (NH
4

+) using plant root simulator
(PRS) probes (Western Ag Innovations Inc., Saskatoon, SK)
that we refer to as ion exchange membranes. Inorganic N
measured with ion exchange membranes represents the N
ions available to plant roots during the burial period and
includes N that is mineralized during this time [31]. We
buried ion exchange membranes vertically in the top 12 cm
of soil in each of the 64 microsites per location where
they remained for 4 months. Ion exchange membranes were
replaced in March, July, and October-November to sample
the seasons of winter, spring through early-summer, and
late-summer through fall. We measured inorganic N at
Greenville in 2009 and 2010, Onaqui in 2008 and 2009, and
Stansbury in 2009 (Table 1). After ion exchange membranes
were removed from the soil, we cleaned them with deionized
water and shipped them back to Western Ag Innovations for
colorimetric analysis of NO

3

− and NH
4

+.

2.5. Data Analysis. We analyzed response variables with
mixed-model analysis of variance using Proc Mixed (SAS
v9.2, SAS Institute, Inc., Cary, NC). This procedure used
maximum likelihood estimation and 𝐹 tests to evaluate fixed
effects. We applied treatments on different years in a stagger-
start design [32] and analyzed years and locations together
broadening our inferences beyond just one location and
corresponding year.We accounted for the variance associated
with some locations treated and measured on different years
by nesting microsites in trees, trees in blocks, blocks in years,
and years in locations in the random statement of Proc
Mixed. This nested design also adjusted for potential spatial
correlation across microsite types. We adjusted for potential
temporal correlation using repeated measures where appro-
priate. The response variables of soil C : N ratios (𝑛 = 224),
Olsen P (𝑛 = 64), sulfate S (𝑛 = 64), and inorganic N
(𝑛 = 448) were log transformed to make variances more
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Table 1: Soil-sampling schedule for soil nutrients.

Soil nutrient Location Season Year
Total C; total N; C :N Greenville, Onaqui, Stansbury Summer 2008
Total C; total N; C :N Greenville and Onaqui Summer 2009, 2010
Olsen P; SO

4

−-S; pH Greenville and Onaqui Summer 2010
Inorganic N (NO

3

− + NH
4

+) Greenville Winter; spring-summer; summer-fall 2009, 2010
Inorganic N (NO

3

− + NH
4

+) Onaqui Winter; spring-summer; summer-fall 2008, 2009
Inorganic N (NO

3

− + NH
4

+) Stansbury Winter, Spring-Summer 2009
Soil nutrients other than inorganic N were analyzed from soil samples annually collected in August from the top 2 cm of the soil profile where the effects of
masticated-tree debris were expected to be the greatest. Inorganic N was derived from ion exchange membranes (PRS probes) buried in the top 12 cm of soil.
Sampling seasons for inorganic N were winter (November–February), spring-summer (March–June), and summer-fall (July–October).

equal prior to analysis and back-transformed to median
estimates using exponentiation. Total C (𝑛 = 224), total
N (𝑛 = 224), and pH (𝑛 = 64) met analysis of variance
data requirements based on evaluation of residuals plots
without transformation. The two additional microsite types
in masticated than untreated plots prevented a full factorial
analysis. To allow all treatment and microsite comparisons,
we assigned each treatment by microsite combination to one
of eight levels of the combined main effect of treatment-
microsite. We evaluated the overall mastication effect by
comparing the five microsite types in masticated plots with
the three microsite types in untreated plots using linear
contrasts. Linear contrasts also provided individual microsite
comparisons within and across treatment plots. Soil inor-
ganic N analysis also included the main effect of season. We
used pseudo-Bonferroni with a 0.01 critical alpha level to
adjust for false positives from multiple comparisons.

3. Results

3.1. Tree Reduction. The main effect of treatment-microsite
was significant for total C, total N, C :N ratio, Olsen P, and
sulfate S derived from soil samples (𝑃 < 0.05; Table 2)
but masticating juniper trees that presumably reduced tree
resource uptake did not alter most of these variables (𝑃 >
0.01; Table 3). This indicates that most soil nutrient dif-
ferences were among microsite types rather than between
untreated and masticated plots (𝑃 > 0.01). However, the
five microsite types in masticated plots together did have
7mg kg−1 more P than the three microsite types in untreated
plots (𝑃 < 0.01). The main and interaction effects of
treatment-microsite and seasonwere significant for inorganic
N derived from ion exchangemembranes (𝑃 < 0.01; Table 2).
Juniper reduction had a greater effect on inorganic N than
tree mounds. The five microsite types in masticated plots
together had 2.39 kg ha−1 4mo−1 more inorganic N than the
three microsite types in untreated plots across all seasons
(𝑃 < 0.01). Masticated microsites individually also had more
inorganic N than untreated microsites (𝑃 < 0.01; Figure 3).

3.2. Soil Cover Types. Tree mounds had greater effects on soil
nutrients thanmasticated-tree debris. Intact treemound soils
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Figure 3: Juniper tree reduction with mechanical mastication alters
inorganic N (NO

3

−
+ NH

4

+) levels measured with ion exchange
membranes in intact tree mounds and interspaces between trees.
Asterisks indicate differences between column pairs (𝑃 < 0.01).
Winter includes November–February, spring-summer includes
March–June, and summer-fall includes July–October. Error bars are
95% confidence intervals.

had more total C, total N, sulfate S, and lower C :N ratios
than bare interspaces in both masticated and untreated plots
(𝑃 < 0.01; Tables 3 and 4). Tree mounds with or without
intact litter and with or without masticated-tree debris in
masticated plots had more inorganic N than interspaces with
or without debris during spring-summer, winter, and all
seasons together (𝑃 < 0.01; Figures 4 and 5). Litter removal
from tree mounds did not change the level of most nutrients
but in masticated plots it reduced Olsen P by 13.6mg kg−1
and increased pH by 0.15 (𝑃 < 0.01; Table 5). Litter removal
from treemounds in untreated plots increased inorganicNby
0.35–0.43 kg ha−1 4mo−1 during spring-summer, summer-
fall, and all seasons together (𝑃 < 0.01; Figure 4).Masticated-
tree debris did not alter soil nutrient levels derived from
soil samples in intact tree mounds or interspaces (𝑃 >
0.01; Table 4). However, masticated-tree debris decreased
interspace inorganic N by 1.08–1.68 kg ha−1 4mo−1 during
summer-fall, winter, and all seasons together (𝑃 < 0.01;
Figure 5).



Applied and Environmental Soil Science 5

Table 2: Soil nutrient mixed-model analysis of variance and type III 𝐹-tests from maximum likelihood estimation.

Response variables Effect Num DF1 Den DF2 𝐹 value 𝑃 value
Total C% Treatment-microsite3 7 66 17.58 <0.001
Total N% Treatment-microsite 7 66 22.01 <0.001
C :N ratio Treatment-microsite 7 66 7.23 <0.001
Olsen P mg kg−1 Treatment-microsite 7 42 2.47 0.032
SO
4

−-S mg kg−1 Treatment-microsite 7 42 6.31 <0.001
pH Treatment-microsite 7 42 1.32 0.263
Inorganic N kg ha−1 4mo−1 Treatment-microsite 7 59 29.71 <0.001

Season 2 273 17.85 <0.001
Treatment-microsite ∗ season 14 272 8.72 <0.001

1Num DF: numerator degrees of freedom.
2Den DF: denominator degrees of freedom.
3Treatment by microsite combinations constitute the eight levels of the treatment-microsite main effect.

Table 3: Tree mastication and intact tree mound effects on soil
nutrients derived from soil samples.

Untreated Masticated
Total C%

Tree mound intact 6.32a (4.96–7.69) 7.07a (5.71–8.43)
Interspace 3.12b (1.76–4.49) 3.70b (2.34–5.07)

Total N%
Tree mound intact 0.26a (0.21–0.32) 0.28a (0.23–0.34)
Interspace 0.11b (0.06–0.17) 0.10b (0.05–0.16)

C :N ratio
Tree mound intact 24.55b (17.11–35.24) 24.95b (17.39–35.8)
Interspace 33.20a (23.14–47.66) 41.12a (28.65–59.00)

Olsen P mg kg−1

Tree mound intact 21.14a (15.9–28.12) 33.99a (25.56–45.21)
Interspace 21.02a (15.80–27.96) 22.65a (17.03–30.12)

SO
4

−-S mg kg−1

Tree mound intact 38.32a (13.74–106.9) 31.21a (11.19–87.06)
Interspace 4.82b (1.73–13.46) 8.33b (2.99–23.23)

pH
Tree mound intact 7.62a (7.53–7.71) 7.63a (7.54–7.72)
Interspace 7.70a (7.61–7.79) 7.68a (7.59–7.77)

No differences between columns (𝑃 > 0.01). Estimates with the same letter
between rows are not different (𝑃 < 0.01). Numbers in parentheses are 95%
confidence intervals.

4. Discussion

Tree reduction by mechanical mastication increased inor-
ganic N but had no effect on soil total C, total N, C :N ratios,
sulfate S, and pH and little effect on Olsen P. Inorganic N
was two to five times greater in masticated than untreated
areas throughout the year. The increased inorganic N was
likely due to decreased tree use of water and inorganic N and
increased time of soil water availability [23, 33]. Mastication
of juniper trees increased the annual average number of soil
wet days (>–1.5MPa) by 27 [23]. More importantly, mastica-
tion increased the number of wet days during the growing
season (spring and summer) by 44.5 [23]. Longer periods
of soil water availability increase nutrient diffusion through

Table 4:Masticated-tree debris and intact treemound effects on soil
nutrients derived from soil samples.

Debris No debris
Total C%

Tree mound intact 7.61a (6.25–8.97) 7.07a (5.71–8.43)
Interspace 4.44b (3.08–5.80) 3.70b (2.34–5.07)

Total N%
Tree mound intact 0.32a (0.27–0.38) 0.28a (0.23–0.34)
Interspace 0.16b (0.1–0.21) 0.10b (0.05–0.16)

C :N ratio
Tree mound intact 23.43a (16.33–33.62) 24.95b (17.39–35.8)
Interspace 31.02a (21.62–44.51) 41.12a (28.65–59.00)

Olsen P mg kg−1

Tree mound intact 26.66a (20.04–35.45) 33.99a (25.56–45.21)
Interspace 26.02a (19.56–34.60) 22.65a (17.03–30.12)

SO
4

−-S mg kg−1

Tree mound intact 16.45a (5.90–45.88) 31.21a (11.19–87.06)
Interspace 3.63a (1.30–10.11) 8.33b (2.99–23.23)

pH
Tree mound intact 7.67a (7.58–7.76) 7.63a (7.54–7.72)
Interspace 7.67a (7.58–7.76) 7.68a (7.59–7.77)

No differences between columns (𝑃 > 0.01). Estimates with the same letter
between rows are not different (𝑃 < 0.01). Numbers in parentheses are 95%
confidence intervals.

the soil solution from areas of high to low concentration,
which increases adsorption of nutrients by ion exchange
membranes that largely depend on nutrient diffusion [31].
The dependence of nutrient diffusion on soil water held at
>–1.5MPa soil water matric potentials is also critical for
spring growth in sagebrush steppe [24, 33]. These increases
in resource availability in the forms of inorganic N and soil
water result in greater annual and perennial grass production
in masticated areas compared with untreated areas [34].
Mastication of juniper trees doubled to tripled bluebunch
wheatgrass (native perennial) and cheatgrass (exotic invasive
annual) tillers and aboveground biomass in the same areas as
our study through increased resource availability [34].
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Table 5: Tree mound effects on soil nutrients derived from soil
samples.

Intact tree mound Removed-litter tree mound
Total C%

Untreated 6.32a (4.96–7.69) 5.19a (3.83–6.56)
Masticated 7.07a (5.71–8.43) 6.23a (4.86–7.59)

Total N%
Untreated 0.26a (0.21–0.32) 0.21a (0.15–0.26)
Masticated 0.28a (0.23–0.34) 0.24a (0.19–0.30)

C :N ratio
Untreated 24.55b (17.11–35.24) 25.81a (17.98–37.04)
Masticated 24.95b (17.39–35.8) 25.76a (17.95–36.97)

Olsen P mg kg−1

Untreated 21.14a (15.9–28.12) 14.65a (11.01–19.48)
Masticated 33.99a (25.56–45.21) 20.39b (15.33–27.12)

SO
4

−-S mg kg−1

Untreated 38.32a (13.74–106.9) 30.92a (11.08–86.26)
Masticated 31.21a (11.19–87.06) 12.54a (4.5–34.99)

pH
Untreated 7.62a (7.53–7.71) 7.70a (7.61–7.78)
Masticated 7.63a (7.54–7.72) 7.78a (7.69–7.87)

Estimates with the same letter between columns are not different (𝑃 < 0.01).
Numbers in parentheses are 95% confidence intervals.
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Figure 4: Tree mound effects on inorganic N (NO
3

−
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+)
derived from ion exchange membranes. Asterisks indicate dif-
ferences between column pairs (𝑃 < 0.01). Winter includes
November–February, spring-summer includes March–June, and
summer-fall includes July–October. Error bars are 95% confidence
intervals.

The lack of tree reduction effect on soil total C, total N,
sulfate S, and pH was likely a result of slow plant material
decomposition. Slow decomposition of juniper is expected
due to the aridity of the environment, the high C :N ratio of
the woody debris, and limited incorporation of debris into
the soil [20]. Future sampling is needed to determine long-
term decomposition effects on soil nutrient concentrations.
Techniques to better incorporate masticated-tree debris into
the soil could increase total soil C in the short term as has
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Figure 5: Masticated-tree debris effects on inorganic N (NO
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mounds and interspaces between trees. Asterisks indicate dif-
ferences between column pairs (𝑃 < 0.01). Winter includes
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summer-fall includes July–October. Error bars are 95% confidence
intervals.

been found with sawdust [35]. Lyons and McCarthy [36]
found a mass-loss decay constant of 0.176 yr−1 based on
annualmass loss of Ashe juniper (Juniperus ashei J. Buchholz)
wood 2 years after chipping on the Edwards Plateau in Texas.
Our locations are expected to have slower decomposition
rates with 10∘C cooler annual average temperatures and half
the annual average precipitation of Edwards Plateau [23, 36].

Tree mounds with and without masticated-tree debris
had higher concentrations of total C, total N, and inorganic N
than adjacent interspaces with or without debris cover. High
soil fertility in juniper mounds compared to interspaces is a
well-known phenomenon [3, 4, 6, 37]. Juniper trees develop
these resource islands as their roots mine resources from
interspaces and drop nutrients under their canopies in the
form of leaf scales, fruits, and twigs over decades [3–5]. The
redistribution of nutrients and increasing size of resource
islands during woody plant encroachment may serve as a
positive feedback mechanism [8, 38]. This feedback may
encourage the continued dominance of woody plants as soil
and nutrients are lost from the interspaces through wind and
water erosion further increasing desertification [8, 38]. This
process makes it more difficult for the former distribution of
resources and preencroachment plant community to return
after disturbance [8, 38].

High levels of inorganic N after mastication could favor
invasive annuals over native perennials. Increased soil N has
been shown to increase aboveground tissueN concentrations,
growth rates, and competitive ability of annual grasses as well
as to encourage dominance of invasive annuals over peren-
nials [19, 39–43]. This potential increase in invasive annuals
would most likely occur in intact tree mounds where soil N
availability is abundant and where the duration of available
soil water is high following tree reduction [23]. However,
higher inorganic N did not result in a general increase in
seedling establishment of sown annual or perennial grasses in
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intact tree mounds compared to interspaces in an associated
study [34]. This may be due to reduced light penetration
and seedling emergence under litter [44] or because soil N
availability may have been sufficient for plant growth even
in interspaces. This suggests that juniper mastication will not
favor invasive annuals more or less than native perennials.

Even though resource islands do eventually dissipate
with time since tree reduction [8], many years are required.
Resource islands can last for 15 years after juniper cutting as a
result of deep tree mounds [45]. As nutrient concentrations
in old tree mounds degrade over time, resource islands
become smaller, nutrients become more evenly distributed,
and resilience of the preencroachment plant community may
be strengthened [8, 46]. Restoring the appropriate scale of
resource patchiness through anthropogenic means or fire has
been suggested as an important step in the reestablishment
of preencroachment plant communities [8, 46, 47]. A more
rapid return of preencroachment sized resource islands and
distribution is especially important in these systems because
invasive annuals or surviving trees will likely dominate before
resource islands naturally dissipate where perennial grasses
and shrubs are absent. More research is needed to fully
understand the potential for mechanical or fire manipulation
of the size of resource patches to encourage reestablishment
of the preencroachment plant community.

Higher inorganic N in tree mounds than interspaces with
or without debris in masticated plots illustrates the resource
island distribution pattern. However, intact tree mounds
had less inorganic N than removed-litter tree mounds and
interspaces in untreated plots. Ion exchange membranes in
tree mounds may have adsorbed less N than in interspaces
of untreated plots because of more intense competition for
soil N from a higher concentration of juniper fine feeder
roots in tree mounds than in interspaces [48]. The higher
inorganic N in removed-litter tree mounds and interspaces
than intact tree mounds in untreated plots may also have
been due to warmer soil temperatures. Removed-litter tree
mounds had 224 more degree days (>0∘C) and interspaces
had 382 more degree days than intact tree mounds during
spring and summer [23]. High soil temperatures can reduce
juniper root activity [49] and thereby reduce competition for
soil N near the surface allowing more N ions to be adsorbed
by ion exchange membranes in removed-litter tree mounds
and interspaces.

Microsites in masticated plots collectively had more
Olsen P than microsites in untreated plots. This result may
have been due to reduced P uptake by trees after mechan-
ical mastication, longer durations of plant available water
[23] allowing more P mineralization during spring, or P
being released into the soil solution through microorganism
mineralization of organic P from decomposing roots [20].
Within masticated plots, intact tree mounds had more P
than removed-litter tree mounds. This result may have been
due to the longer durations of plant available soil water in
intact tree mounds with 28 more wet days during spring than
removed-litter tree mounds in masticated plots [23]. As low
P availability has been suggested as a limiting factor of plant
growth in juniper woodlands [50–52], the slight increase
in P after juniper mastication may lead to increased plant

production as with bluebunch wheatgrass and cheatgrass
discussed earlier [34]. Plants that currently occupy the site
are more likely to benefit from the increased P availability
than plants that require time to propagate into treated areas
because P can quickly react with calcium in alkaline soils and
become less available in the form of calcium phosphate [20].
This emphasizes the importance of preventing initial juniper
tree or weedy species dominance because the composition
of the pretreatment plant community largely determines the
posttreatment plant community [53].

Inorganic N levels were similar between bare and debris-
covered interspaces during spring, a critical season for
seedling establishment, even though debris-covered inter-
spaces had less inorganic N during late-summer through
winter. We had expected woody masticated-tree debris with
a high C :N ratio to lower inorganic N in debris-covered
interspaces because soil microorganisms need organic C
sources with C :N ratios not higher than 25 : 1 for metabolism
[20]. Otherwise, they use available soil N to support their
decomposition of high C :N ratio plant material [20]. West-
ern juniper (Juniperus occidentalis Hook.), a species simi-
lar to Utah juniper, has wood C :N ratios of 240 : 1 [54].
If woody masticated-tree debris had lowered inorganic N
during spring, then we would have expected a negative effect
on invasive annual seedlings compared to perennial grass
seedlings. Lower successional, invasive annuals tend to be
replaced by more competitive perennial species over succes-
sional time as nutrient availability decreases, even though
the annuals generally grow rapidly under conditions of high
resource availability after disturbance [55, 56]. Cheatgrass,
for example, increased in cover mostly where soil water
and nutrient availability were expected to be greatest due
to the least amount of competing vegetation [57]. When
continually low soil N availability is maintained for several
years, reductions in the growth, tillering, and seed production
of invasive annuals like cheatgrass may allow dominance
of established perennials over semiarid lands [19, 43, 58].
In addition, reductions in soil N availability are thought to
reduce the invasibility of plant communities [16] and thereby
strengthen the resistance and resilience of preencroachment
plant communities to invasive annuals. Treated areas are
likely to be dominated by perennials after juniper reduction
even where juniper encroachment was high as long as inva-
sive annual plant cover is limited and perennial plants remain
after treatment [57]. A survey of masticated sites across Utah
found that, when perennial herbaceous cover was >30%,
cheatgrass cover was usually <10% [59] because abundant
perennial grass limits cheatgrass dominance [53, 60–63].

4.1. Implications. Juniper trees are masticated to reduce the
danger of crown fire and to restore the historic sagebrush
steppe plant community. Our soil nutrient comparisons
reflect not only the results of juniper tree mastication but
also the potential effects of juniper tree removal for biofuel
production in areas that did not receive masticated-tree
debris. Mastication improves growing conditions for plants
by increasing inorganic N in this N limited system. The
abundance of residual perennial species compared to the
abundance and propagule pressure of invasive annual species
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will greatly affect which life form benefits most from the
increased resource availability following tree reduction [13,
62, 64, 65].Whether invasive annuals or perennials dominate
long-term given increased resource availability following
juniper mastication remains to be seen. Mechanical mastica-
tion of junipermay provide an opportunity to not only reduce
juniper encroachment but also mechanically spread tree
mounds. This should hasten the redistribution of nutrients
back to a pretree encroached distribution of resources more
characteristic of the sagebrush steppe. Restoring predistur-
bance resource distribution aids in the restoration of historic
plant communities [8, 46, 47]. Monitoring of restoration
projects will play an important role in assessing the long-
term impacts of juniper mastication on resource availability
and plant community dynamics. Maintenance of vigorous
and diverse preencroachment vegetation should limit the
resources available to invasive annuals and may be the most
effective form of weed control [12, 60]. Hence, it is imperative
tomasticate treeswhendesirable perennials are still abundant
enough to use the increased resource availability following
juniper reduction and limit niches of resource availability to
invasive annuals.
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